New approaches may help solve the Lyme disease diagnosis dilemma
Excerpted from ScienceNews: (0i6/23/2019)
Unable to look for the bacteria directly, at least for now, diagnosis depends on deciphering clues from the body’s immune response. The standard test has two steps. The first looks for antibodies that respond to Lyme-causing bacteria. The second, called a Western blot, validates the diagnosis by confirming the presence of other antibody proteins that are more specific for Lyme. (The two steps are used together to reduce the odds of a false-positive test.)
In 2005, Rachel Straub was a college student returning home from a three-week medical service mission in Central America. Soon after, she suffered a brutal case of the flu. Or so she thought.
“We were staying in orphanages,” she says of her trip to Costa Rica and Nicaragua. “There were bugs everywhere. I remember going to the bathroom and the sinks would be solid bugs.” She plucked at least half a dozen ticks off her body.
Back in Straub’s hometown of San Diego, fevers and achiness tormented her for a couple of weeks. Her doctor suspected Lyme disease, which is spread by ticks, but a test came back negative, and at the time, the infection was almost unheard of in Latin America.
For years, Straub struggled off and on with crushing fatigue and immune problems. She forged on with her studies. Dedicated to physical fitness, she started writing a book about weight training. But in late 2012, she could no longer push through her exhaustion.
“My health was shattering,” she says. By January 2013, she could hardly get out of bed and had to move back in with her parents. She describes a merry-go-round of physicians offering varying explanations: chronic fatigue syndrome, mononucleosis. She never got a definitive diagnosis, but a rheumatologist with expertise in immunology finally prescribed powerful antibiotics.
Almost immediately, Straub broke out in chills and other flulike symptoms, and her blood pressure plummeted, problems that sometimes arise when pathogens begin a massive die-off inside the body. She began to feel better, but slowly. Over the next four years, she could barely leave her house.
Stories like Straub’s are what make Lyme disease one of the most charged and controversial of all infections. It’s not hard to find tick-bitten patients who live for years with undiagnosed and unexplained symptoms that defy repeated treatment attempts.
Patient advocates point to people who agonize for years, drifting from doctor to doctor in search of relief. Battles with insurers who won’t pay for therapy without a definitive diagnosis have played out in courthouses and statehouses. Desperate patients sometimes turn to solutions that may pose their own risks. The U.S. Centers for Disease Control and Prevention recently described people who had developed serious complications, or even died, after unproven treatments for Lyme disease.
Many, if not most, of these problems are caused by the lack of a reliable test for the infection. “This deficiency in Lyme disease diagnosis is probably the most prevalent thing that is responsible for the controversies of this disease,” says Paul Arnaboldi, an immunologist at New York Medical College in Valhalla.
That’s why Arnaboldi and other researchers are trying to devise better diagnostics (SN: 9/16/17, p. 8). The standard two-part test that’s used now, which has changed little in concept since the 1990s, may miss about half of infected people in the early weeks of illness. The test relies on finding markers that show the immune system is actively engaged. For some people, it takes up to six weeks for those signs to reach detectable levels.
To find better ways to diagnose the disease more reliably and maybe sooner, scientists are trying to identify genetic changes that occur in the body even before the immune system rallies. Other researchers are measuring immune responses that may prove more accurate than existing tests.
The science has advanced enough, according to a review in the March 15 Clinical Infectious Diseases, that within the next few years, tests may finally be able to measure infections directly. The aim is to amplify traces of the Lyme bacteria’s genetic material in the bloodstream. Enough approaches are in various stages of research that some patient advocates have renewed optimism that the problems with testing may finally become a thing of the past.
Ticked off
In the United States, ticks pass about a dozen illnesses to people, but Lyme disease is the most common (SN: 8/19/17, p. 16). It’s most often caused by the bacterium Borrelia burgdorferi, which usually hitches a ride inside black-legged ticks, also known as deer ticks. When a tick bites and latches on to a person, the bacteria enter the skin, often causing a distinct, circular bull’s-eye rash radiating from the bite. But about 20 to 30 percent of infected people never experience any kind of rash, and many of those who do simply never notice it.
About 30,000 infections are reported annually in the United States, but public health experts estimate that the true number is 10 times as high.
Once in the skin, the corkscrew-shaped bacteria travel into the bloodstream and then migrate into joints and connective tissues, sometimes reaching the heart and nervous system. The problem is that treatment with antibiotics is most successful when the infection is in its earliest stages — the exact time when the standard diagnostic test is least reliable.
Doctors have an easier time diagnosing other infections using a technique called polymerase chain reaction. PCR amplifies bits of the pathogen’s genetic material from a patient’s blood, making the infection easier to confirm. But PCR isn’t sensitive enough for many Lyme infections, says Jeannine Petersen, a microbiologist at the CDC’s Division of Vector-Borne Diseases in Fort Collins, Colo. Lyme-causing bacteria congregate in very low numbers in blood samples, she says, which “makes it very hard to detect the organism itself using standard methods, such as PCR.”
For more: https://www.sciencenews.org/article/ticks-lyme-disease-testing-new-approaches